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Abstract. The simulation of the transition sequence of superheated Type I superconducting granules (SSG)
in disordered suspensions when an external magnetic field is slowly increased from zero has been studied.
Simulation takes into account diamagnetic interactions and the presence of surface defects. Results have
been obtained for the transition sequence and surface fields distribution covering a wide range of densities.
These results are compared with previous analytical perturbative theory, which provides qualitative infor-
mation on transitions and surface magnetic fields during transitions, but with a range of validity apparently
limited to extremely dilute samples. Simulations taking into account the complete diamagnetic interactions
between spheres appear to be a promising tool in interpreting SSG experiments, in applications such as
particle detectors, and in some fundamental calculations of Solid State Physics.

PACS. 41.20.Gz Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems –
74.80.Bj Granular, melt-textured, and amorphous superconductors; powders

1 Introduction

The study of the electric and magnetic properties of in-
homogeneous or disordered systems has been a subject
of long-standing interest in both basic and applied con-
densed matter physics. Historically, studies of these prop-
erties have usually dealt with the determination of effec-
tive parameters (typically dielectric constants) on a longer
spatial-scale than the typical scales of the inhomogeneities
or the disorder [1]. However, in superconducting granular
materials the situation is more complex and interesting.
These systems, in response to applied fields, can suffer
transitions which depend on details at the disorder scale.
Moreover, as will become evident below, local fields change
at every transition, which makes the response of the whole
system history-dependent. In this context, mean or effec-
tive properties of these materials are of limited interest.

Measurements on superconducting granular materials
can provide interesting information from a fundamental
point of view. For example, the measurement of the super-
critical fields of disordered suspensions of superconduct-
ing granules has yielded determinations of the Ginzburg-
Landau parameters of the superconducting transition [2].
On the other hand, the superheated-to-normal phase tran-
sitions of Type I superconducting suspensions, induced
by irradiation, have served as the basis for the recent de-
velopment of particle detectors [3]; also the irradiation-
induced supercooled normal-to-superconducting transi-
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tion of granular arrays is being explored [4] with respect
to dark matter detection in astroparticle physics.

In a superconducting granular material, the transi-
tion of each granule is determined by its position in its
phase diagram, which is schematically shown in Figure 1.
Type I superconductors exhibit hysteresis, so a granule
can traverse the equilibrium curve Bc without transiting
as long as it remains in the metastable region. In Fig-
ure 1 we show the case of an isolated metastable super-
conducting granule. It can be seen that the actual normal
to superconducting transition, whether induced by a field
increase ∆B or heating ∆T , depends critically on its loca-
tion in the (T,B) phase space referred to the superheat-
ing field curve Bsh. Theoretically, this location is given
by the bath temperature and the maximum field on the
surface Bmax = (3/2)Bext. Experimentally, the location
generally varies over a small range of fields as a result of
surface and volume defects which act as nucleation cen-
ters [5,6]. In contrast, a disordered suspension exhibits a
broader range of transition field values [7,8], which is gen-
erally due both to defects and to diamagnetic interactions
between the superconductors themselves. This spreading
depends directly on the local fields on the surface of the
granules, information which is not directly accessible in
experiments, and can reach typical values of 20%. Analo-
gous behavior has been found in superconducting granule
detectors, in which transitions occur by incident energy
from particles or radiation. In this case the uncertainty
in the minimum energy necessary for the transition nec-
essarily hinders the interpretation of the results of these
devices [7]. On the other hand, the long-range nature of
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Fig. 1. Phase diagram for a type I superconductor. ∆B and ∆T represent the increase of either the magnetic field or the
temperature needed for a transition to the normal state.

the diamagnetic interaction produces changes in the sur-
face field values for the entire system as each transition
occurs. In consequence, the suspension disorder and its
effects change with each transition. Therefore, it is clear
that a complete theoretical analysis of diamagnetic inter-
actions and their effects on transitions constitutes a first
step in the interpretation of experiments involving this
kind of suspensions.

There exist numerous theoretical results available on
magnetic or (mathematically analogous) electric proper-
ties of disordered materials. These are mainly for the ef-
fective dielectric constant of composites, involving mean
field calculations, such as the classical mean-field Clausius-
Mossotti or Maxwell-Garnett [9] approximation, rigorous
bounds [10,11], or cluster expansions for suspensions of
polarizable spheres [12,13]. Analogous expansions have
been developed for the diamagnetic properties of super-
conducting sphere suspensions. In the regime of dilute
suspensions, Geigenmüller [14] constructed a perturbative
theory which is not limited to effective properties, but
which calculates statistics of local surface fields on the
granules and of the transitions induced by the external
field. This theory is formally based on a cluster expansion
in such a way that all the quantities are expanded in pow-
ers of the volume fraction ρ occupied by the microgran-
ules. In practice, the expansion is performed up to first
order, which means that only two-body interactions are
considered [14]. Nevertheless, it provides the only analyti-
cal framework in which experiments have been interpreted
so far.

In this paper we will study the magnetic properties of
a disordered ensemble of (type I) superconducting gran-
ules immersed in an external magnetic field by numeri-
cal simulation. We specifically address the question of the
diamagnetic interactions between granules, and the pro-
cess of the successive transitions in the system induced
by an increase of the external field. Relevant information,

which is not experimentally accessible, such as local sur-
face field values, is obtained during transitions. Conditions
on which these transitions occur (essentially the external
field values) are the crucial point in the applications men-
tioned above. The comparison of the simulation results
to the perturbative calculation shows that the problem
in interpreting experiments is twofold. Firstly, direct ap-
plication of the perturbative results, which are valid in
the dilute regime in principle, uses linear extrapolations
of the experimental results to the zero-density limit as
parameters of the theory. As we will show, the validity
condition of this procedure (i.e. that experiments lie in
the proper range of validity of the theory) is hardly ful-
filled by current experimental results. Therefore, quanti-
tative predictions are expected to fail in all density ranges.
Secondly, some interesting results arise in measurements
performed in high-density conditions, where diamagnetic
interactions are most important and the perturbative the-
ory does not apply. This is the case for instance of the
experimental determination of the supercooling branch of
the phase diagram and its associated Ginzburg-Landau
parameters [2]. In each branch of a hysteresis loop, the last
transiting granules are expected to be the most defect-free
ones. Contrary to the superheating case, in a supercooling
situation these granules are most affected by diamagnetic
interaction of other superconducting granules. In view of
all these circumstances, both the quantitative determina-
tion of the limits of validity of the perturbative calcula-
tion, and the use of simulation to obtain results valid in
the whole density regime are of prime interest.

The structure of this paper is the following. The simu-
lation procedure is described in detail in Section 2. Results
obtained for representative cases, presented in Section 3,
show the critical importance of diamagnetic interactions
in the transitions of disordered superconducting suspen-
sions, and quantitatively demonstrate the limited range
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of validity of the perturbation theory. In Section 4 some
conclusions are drawn from this work.

2 Simulation details

We performed simulations of dispersions of N supercon-
ducting spheres of radius a sited in positions given by
Ri in a thin cylindrical sample of thickness L and radius
α×L. Positions were chosen at random in the prescribed
volume excluding configurations in which the distance be-
tween the centers of any couple of spheres is d ≤ 2a. An
external field Bext perpendicular to the system was con-
sidered. The radius of the spheres was considered much
greater than the London penetration length, and the tran-
sitions of each sphere to the normal phase are completed
when the local magnetic field on any point of its surface
reaches a threshold value Bth. Hence, we do not consider
partial transitions to the intermediate state. This is justi-
fied when the local magnetic field applied over a sphere is
greater than the critical magnetic field Bc, and thus the
sphere is in a metastable state [14]. Neither the possible
effects of diamagnetic contact and associated percolation
phenomena for very concentrated configurations were con-
sidered. The magnetic field B(r) can be determined from
a scalar potential U(r)

B(r) = −∇U(r), (1)

which satisfies the Laplace equation

∇2U(r) = 0 (2)

with the following boundary conditions. Firstly, for any
superconducting sphere the magnetic field is tangential
to the surface, i.e. the normal derivative of the potential
vanishes there. Secondly, the value of the field very far
from the sample should match Bext:

U(r)→ −r ·Bext (r →∞). (3)

The scalar potential U(Rj + rj) near sphere j can be
expanded in multipoles [14,15] which, introducing the
boundary conditions at the surface of the sphere, can be
written as

U(Rj + rj) =
∞∑
λ=1

λ∑
µ=−λ

Yλµ(r̂j) cλµ(j)

×
{(

a

rj

)λ+1

+
λ+ 1
λ

(rj
a

)λ}
+K(j), (4)

where Yλµ(r̂j) are spherical harmonics, and cλµ(j) and
K(j) are the coefficients of the expansion. There is one of
these expansions for each sphere.

From all the expansions, and employing the bound-
ary conditions, the coefficients satisfy the following equa-
tions [15]:

K(j) = −Rj ·Bext +
∑
k 6=j

∞∑
λ=1

λ∑
µ=−λ

A00λµ(j, k) cλµ(k)(5)

λ+ 1
λ

cλµ(j) = −
√

4π
3
Bext a δλ1δµ0

+
∑
k 6=j

∞∑
λ′=1

λ′∑
µ′=−λ′

Aλµλ′µ′(j, k) cλ′µ′(k) (6)

where the constants Aλµ λ′µ′(j, k) are given in refer-
ence [16]. Without loss of generality, in equation (6) we
have placed the external field in the z-direction. After de-
termining the values of the unknowns cλµ(j) and K(j) for
a given configuration, it is possible to calculate the surface
fields from equation (4).

The constants K(j) only give additive contributions to
the potential and do not affect the magnetic field values,
so the problem is, in principle, to solve the infinite set of
linear equations (6) for the unknown c’s. In practice one
only takes into account a limited number of multipolar
terms according to the desired precision. Even then, the
number of unknowns is so large that a direct solution of
the equations (6) is a formidable task for configurations
with a representative number N of spheres. Instead, we
employ the following iterative method [16]. Equation (6)
can formally be written as a matrix equation for the vector
of unknown c

c = b +Ac (7)

whose solution is

c = (I −A)−1b (8)

which can be expanded as a power series in A,

c =
(
I +A+A2 +A3 + ...

)
b. (9)

The simplest way to numerically perform this expansion
is to apply the iteration

ci+1 = b +Aci, (10)
c0 = b. (11)

The dependence of the A matrix elements on the distance
between the spheres guarantees the convergence of this
expansion, which is faster for more dilute systems. The
desired precision is achieved by iteratively applying equa-
tion (10) until the change of the coefficients c is lower than
a prescribed value.

The procedure in our simulations is then as follows:
N superconducting spheres are placed at random in the
desired geometry according to the value of the given fill-
ing factor ρ (fraction of volume occupied by the micro-
granules). The threshold values Bth for every sphere are
also assigned by using a given distribution. Applying the
iterative method described above, the values of the coeffi-
cients c are obtained, which enables determination of the
local values of the magnetic field on the surface of any
sphere from equations (1, 4). The maximum value of the
surface field for each sphere is then calculated by stan-
dard routines of minimization of multivariate functions.
The comparison of these maximum surface fields with the
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Fig. 2. Fraction f of spheres that remain superconducting versus Bext/Bsh, after an increase of the external magnetic field
from zero, for different occupied volume fractions ρ. Symbols represent simulation results. From right to left, continuous lines
correspond to predictions of equation (12) and reference [14] for ρ = 0, 0.01, 0.05 and 0.10. The case of ρ = 0 is the dilute limit,
i.e. assuming a maximum surface field of 1.5Bext for all the spheres.

respective values of Bth permits selection of the first su-
perconducting sphere that will transit to normal under
an increase of the applied magnetic field. Furthermore,
the precise value of Bext at which the transition occurs
is monitored. Subsequently, the system becomes one of
N − 1 superconducting spheres. The long-range nature of
the diamagnetic interactions changes the surface magnetic
field values of the remaining superconducting spheres on
any transition. This leads us to repeat the same calcu-
lation process after each transition until all spheres have
transited.

3 Results and discussion

For the simulations we have employed a distribution of val-
ues of Bth consistent with experimental results for tin mi-
crospheres diluted in paraffin [17]. A parabolic distribution
fit is used in the interval between 0.8Bsh and Bsh [14,15].
This distribution of Bth values was obtained from exper-
imental data corresponding to systems with small ρ ex-
trapolated to ρ = 0. The number of initially supercon-
ducting spheres employed in simulations was N = 250 for
dilute dispersions with ρ values from 0.001 up to 0.05, and
N = 150 for denser systems with ρ up to 0.20. For each
case we performed averages over a number of independent
configurations between 2 to 7. The geometrical ratio α was
chosen to be 10. This large value of α makes finite-size ef-
fects important for the larger volume fractions employed.
Indeed for ρ = 0.20 a system of N = 150 has a width of
only 4.6 sphere radius, and hence cannot be considered as

truly 3-dimensional. However, it also avoids the appear-
ance at these densities of percolating clusters associated
to diamagnetic contact, which in fact has been ignored in
simulations.

The fraction f of remaining superconducting spheres
during an increase of the external field is shown in Fig-
ure 2 versus Bext for different values of ρ. The furthest
to the right continuous line in this figure shows the ex-
pected behavior for isolated spheres, for which the maxi-
mum surface field is equal to 3/2Bext, and therefore can
be directly related to the distribution of Bth values. We
see that for the most dilute case (ρ = 0.001) the f values
closely follow that ρ = 0 limit, except for a few transitions
occurring earlier than expected corresponding to spheres
whose distances to the nearest neighbor are not very large
(about 0.10−0.15 times the radius value). Therefore, for
such a dilute case, the observed spread in the transition
field values can be attributed to surface defects. However,
Figure 2 shows transitions for increasingly lower external
fields as the concentrations of the sample are increased.
This enhanced spread in the transition fields is produced
by the diamagnetic interactions between spheres in these
more densely packed configurations, which generate lo-
cal surface fields much higher than the externally applied
field and are the origin of the observed dependence on the
sample filling factor. We see that diamagnetic interactions
start to be the most important factor in transition spread-
ing for filling factors of a few per cent. Indeed half of the
spheres have undergone transitions at Bext = 0.48Bsh for
ρ = 0.20, while for ρ = 0.001 a field Bext = 0.60Bsh is re-
quired. Similar behavior was observed in the experimental
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Fig. 3. Fraction f of spheres that remain superconducting in function of ρ for several values of the increasing Bext. Symbols are
simulation results: (◦) Bext = 0.30Bsh, (×) Bext = 0.40Bsh, squares Bext = 0.50Bsh, (∗) Bext = 0.53Bsh, (�) Bext = 0.55Bsh, (+)
Bext = 0.58Bsh, (4) Bext = 0.60Bsh, (•) Bext = 0.62Bsh, full squares Bext = 0.65Bsh. From the top to the bottom, continuous
lines are predictions of equation (12) and reference [14] for the same values of Bext.

results of Dubos and Larrea [18]. In these experiments half
of the spheres transited at Bext = 0.48Bsh for ρ = 0.25,
at Bext = 0.50Bsh for ρ = 0.20, and Bext = 0.53Bsh for
ρ = 0.04. This agreement confirms that the mechanisms
implemented in the simulations (presence of surface de-
fects and influence of diamagnetic interactions) are essen-
tially correct.

These results suggest an analysis of our results in terms
of the perturbative theory of Geigenmüller [14], which
takes into account these mechanisms under the same hy-
potheses (ignoring partial transitions, diamagnetic con-
tact, etc.) assumed in our numerical simulations. This the-
ory performs a systematic expansion of quantities such as
the surface field distribution and the transition sequence
in powers of the filling factor. Within the framework of
this expansion we can write [14]:

f(Bext, ρ) = f0(Bext) + ρf1(Bext) +O(ρ2) (12)

where the zeroth order is the same ρ = 0 prediction rep-
resented in Figure 2. This expansion shows how the dis-
tribution of Bth can be obtained from experimental data
by performing measurements on samples of different den-
sities and extrapolating the results to ρ → 0 [14,15,17].
In this expansion, each order can be calculated from this
distribution of threshold fields Bth, and involves increas-
ingly higher order contributions in the number of spheres.
In the present state of the theory, calculations are done
up to first order, which is equivalent to considering only
two-body interactions.

The comparison between our simulations and the re-
sults of the Geigenmüller theory should permit one to de-
fine the range of validity of the linear approximation, and
provide an insight into the effects of higher order terms.

To this end Figure 2 also shows the predictions of equa-
tion (12) and reference [14] for ρ = 0, 0.01, 0.05 and 0.10
as continuous lines. We see that the theory does contain
the observed trend of transitions to occur for lower exter-
nal fields due to diamagnetic interactions, but agreement
does not seem to be quantitative except for extremely di-
lute samples. For the 5% case agreement appears to be
rather poor and it is worse for denser systems.

A more appropriate test of the linear approximation
involved in equation (12) is the study of the dependence
of f on the density ρ for different values of Bext. This
is shown in Figure 3, where symbols represent simula-
tion results and lines are the perturbative predictions of
equation (12). Note that the evolution of a system dur-
ing successive transitions is represented by points at con-
stant ρ and increasing values of Bext. We see that the
perturbative calculation of equation (12) provides a cor-
rect qualitative picture of the transitions. However, for in-
termediate values of Bext, the differences between theory
and simulations begin to be non-negligible at volume frac-
tions between 2−5%. These results further indicate that
ρ → 0 extrapolations of experimental results, performed
in order to obtain information on the distribution of val-
ues of Bth, should only be made with very dilute systems.
This may explain the apparent discrepancies between the-
ory and experiment found in references [14,17], where the
values of f0 and f1 were evaluated by linear extrapolations
of experimental data up to ρ = 5%. In view of Figure 3,
this procedure should yield erroneous results in the range
of the most interesting values of Bext, where transitions
mostly occur. It is precisely in this range where the con-
tribution of f1 in equation (12) is more important, so it
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Fig. 4. Fraction P of spheres with maximum surface field lower than the x-axis value (in units of Bext), obtained from
equation (13) and reference [14], when the external magnetic field has reached the value 0.5Bsh, for ρ = 0.01 and ρ = 0.20. The
right branch was chosen to extract quantitative information.

is here where a breakdown of the perturbative scheme is
expected [14]. We will address this point below.

The study of the maximum values of the magnetic field
on the surface of the granules is the key point in analyz-
ing the transitions, as pointed out above. This is a quan-
tity that is not accessible to direct experimental measure-
ments. The theory of Geigenmüller provides estimates of
the distribution of values of such maximum fields in the
small-density expansion [14]:

P (Bmax, ρ) = P0(Bmax) + ρP1(Bmax) +O
(
ρ2
)
. (13)

In this equation P (Bmax, ρ) stands for the fraction of su-
perconducting spheres with a maximum surface magnetic
field smaller than Bmax. We have omitted the implicit de-
pendence of such quantities on Bext. P0(Bmax) is the step
function θ(Bmax − 3/2Bext), i.e. the result for isolated
spheres. The linear term describes the broadening of the
distribution due to magnetic interactions [14]. These in-
teractions change at each transition during the increase
of the external field, and therefore are history dependent.
This is the reason why the broadening described by P1

depends on Bext.
The problem of a systematic expansion in ρ of quanti-

ties such as the distribution P (Bmax, ρ) is that by its own
nature the zeroth order is discontinuous, while the effect
of a finite ρ should smooth it. However, it is impossible
that a linear correction such as equation (13) could do this
job for all values of ρ. In fact, looking closely at the pre-
diction of equation (13) around Bmax = 3/2Bext we can
check that there exists a discontinuity and the distribu-
tion function ceases to be monotonous. This breakdown
of the perturbative theory is shown in Figure 4, where we
represent the predictions of the theory for a dilute case

(ρ = 0.01) and a concentrated case (ρ = 0.20) at an ap-
plied external field Bext = 0.5Bsh. At this value of Bext

all transitions are exclusively due to diamagnetic interac-
tions, and whereas for dilute systems only a small fraction
have occurred, for more concentrated configurations the
system is deeply immersed in the transition sequence. We
see that two branches appear on both sides of the discon-
tinuity at Bmax = 3/2Bext. While both branches are close
to each other for small ρ and one could use some criterion
to connect them, for large ρ this is not the case. We have
chosen to use the right-hand side branch in such situa-
tions to extract quantitative information and to compare
it with simulations.

In Figure 5 we show simulation and perturbative re-
sults of the distribution P of maximum surface fields for
systems at Bext = 0.2Bsh and different initial values of ρ.
These results are almost identical to the results without
transitions of reference [16]. For this value of the external
field, only a reduced number of spheres have already tran-
sited, and what one sees is the result of the diamagnetic in-
teractions on almost completely disordered configurations
of superconducting spheres. Again, although the perturba-
tive theory qualitatively describes the diamagnetic effects,
namely the broadening of the maximum field distribution,
it only appears as quantitatively correct for very small val-
ues of the occupied volume fraction. In Figure 6 we show
the analogous results for an external field Bext = 0.6Bsh.
For this field the system has already suffered a large num-
ber of transitions except for the extremely dilute config-
urations. Here the convergence of the perturbative ex-
pansion is expected to be rather limited, and, in fact,
its non-analytical behavior at Bmax = 3/2Bext is clearly
seen. However the perturbative theory (the right-hand side
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Fig. 5. Fraction P of spheres with maximum surface field lower than the x-axis value (in units of Bext), when the external
magnetic field has reached the value 0.2Bsh, for several values of ρ. Continuous lines are the corresponding predictions of
equation (13) and reference [14].
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Fig. 6. Fraction P of spheres with maximum surface field lower than the x-axis value (in units of Bext), when the external
magnetic field has reached the value 0.6Bsh, for several values of ρ. Continuous lines are the corresponding predictions of
equation (13) and reference [14].

branch) continues to provide satisfactory qualitative pre-
dictions. Note that the maximum field distributions are
much narrower after this increase of the external field.
In fact, when a large number of spheres have transited
induced by the external field, those that remain super-
conducting are expected to form quite ordered configura-
tions [19,20], and, as a consequence, the surface field val-
ues become more uniform in the sample [19]. This feature
is captured by the perturbative theory.

In order to show the ordering effect of the transitions
more clearly we present the evolution of the distribution P
during the increase of Bext for three systems with repre-
sentative values of the filling factor: ρ = 0.001 (Fig. 7),
ρ = 0.01 (Fig. 8) and ρ = 0.20 (Fig. 9). For each filling
factor, both simulations and perturbative results are
shown for values of the external field ranging from 0.2Bsh

up to 0.6Bsh, for which most transitions occur. We see
again that the broadening of the field distribution is
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initial ρ = 0.001 for several values of external magnetic field. Continuous lines are the corresponding predictions of equation (13)
and reference [14].
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Fig. 8. Fraction P of spheres with maximum surface field lower than the x-axis value (in units of Bext), corresponding to an
initial ρ = 0.01 for several values of external magnetic field. Continuous lines are the corresponding predictions of equation (13)
and reference [14].

drastically reduced as the external field is increased. The
results indicate discrepancies between the perturbative
theory and the simulations for the lowest values of Bext

even for very dilute systems. However, agreement im-
proves as Bext increases and the systems undergo tran-
sitions.

The results obtained for the most dense system with
a volume fraction ρ = 0.20 (Fig. 9) are particularly

interesting: the large discrepancies observed at Bext =
0.2Bsh evolve to a fair agreement for Bext = 0.5Bsh or
Bext = 0.6Bsh. In Figure 10 we characterize the distribu-
tion of maximum surface fields for this filling factor by its
mean and its standard deviation values, which are repre-
sented versus the increasing external field and compared
with the perturbative theory. One feature of the theory
that is visible here is that it predicts transitions only
for external fields greater than 0.2Bsh. We see that the
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Fig. 9. Fraction P of spheres with maximum surface field lower than the x-axis value (in units of Bext), corresponding to
an initial ρ = 0.20 for several values of external magnetic field. The results for a system with the same number of spheres
that remain superconconducting in the case of Bext = 0.5Bsh but placed at random are also represented. Continuous lines are
the corresponding predictions of equation (13) and reference [14]. Dashed line corresponds to the prediction for the random
configuration.
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Fig. 10. Mean and standard deviation values (in units of Bext) corresponding to the distribution of maximum surface fields
versus the increasing external field for initial ρ = 0.20. The results from the simulations and from the perturbative theory (GT)
are represented.

surface fields approach the isolated sphere values as Bext

increases, whereas the standard deviation approaches zero
indicating an increase of the uniformity of the system. We
also see that the theory approaches the simulation results
quite satisfactorily for external fields greater than 0.4Bsh.

This agreement after transitions between simulations
and a small density approximation is quite surprising for

such a dense case, and appears to be better than that ob-
tained for low densities and low external field. One possi-
ble explanation could be that when a large number of tran-
sitions have occurred, the effective filling factor (if we only
take into account the remaining superconducting spheres)
is smaller, and one could expect a better convergence of
the ρ-expansion. However, this agreement corresponds to
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Fig. 11. Mean and standard deviation values (in units of Bext) corresponding to the distribution of maximum surface fields
versus the resulting effective filling factor ρef . The results from the simulations and from the perturbative theory (GT) are
represented for a system with initial ρ = 0.20 through progressive increasing of the external field.

systems with effective volume fractions after transitions
that are higher than in the low field systems represented
in Figures 7 and 8 for ρ = 0.001 and 0.01. This can be seen
in Figure 11, where we have represented the mean and
standard deviation of the maximum surface fields versus
the effective filling factor ρef for the dense system with
initial ρ = 0.20. In this figure the evolution of the system
is to decreasing values of ρef . We already see good agree-
ment for ρef = 0.1, which is a rather large value. To show
this, in Figure 9 we have also represented the distribution
of maximum fields for a configuration with the same ρef

(slightly lower than 0.1) than that of Bext = 0.5Bsh, but
with positions completely at random, and the correspond-
ing predictions from perturbative theory. Note the good
agreement between theory and simulations for the system
which has been ordered by transitions compared with the
discrepancies observed for the last random configuration
with the same effective filling factor. We can conclude that
the perturbative theory implicitly includes the observed
tendency to form ordered configurations of remaining su-
perconducting spheres, and that it describes these result-
ing configurations quite well, even if they arise from much
more concentrated initial systems. However this good be-
havior of the theory is not completely explained by the
decrease of the effective filling factor during the transition
process.

4 Summary and conclusions

In summary, we have performed numerical simulations
of disordered suspensions of superheated superconduct-
ing granules (SSG), transiting to normal when an exter-

nal magnetic field is slowly increased from zero. Transi-
tions are controlled by the local surface magnetic fields,
which depend in a non-trivial way on the geometrical
configuration of the superconducting granules via strong
diamagnetic interactions, and the presence of surface de-
fects. Performed simulations employ complete resolutions
of the Laplace equation for the magnetic field with suitable
boundary conditions on the surface of the superconduct-
ing spheres, and therefore are expected to provide results
which are not limited to dilute samples. Consistent com-
parison with previous experimental results indicates that
the simulations capture the mechanisms involved in the
real system, and their use in simulations appears to be es-
sentially correct. A better comparison with experimental
results might need a revision of the Bth distribution. Also
the employ of a larger number of spheres in simulations
could be necessary to reduce finite-size effects [16]. On
the other hand, the numerical method can be straightfor-
wardly generalized to SSG configurations with spheres of
different sizes. Preliminary simulations with realistic size
distributions show the same qualitative behaviour than
obtained with spheres of equal radius.

Transition sequences as a function of the (increasing)
applied field have been obtained for a large range of gran-
ule concentrations. Distributions of local maximum sur-
face fields, a relevant quantity in interpreting SSG ex-
periments but not directly measurable, have also been
obtained. Results indicate a non-negligible effect of dia-
magnetic interactions between spheres, even for dilute
systems, manifested in transitions occurring for lower ex-
ternal fields. These interactions appear as the most dom-
inant factor in transitions for filling factors starting at a
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few per cent. The distribution of maximum surface fields
becomes wider for denser configurations owing to diamag-
netic interactions, but successive transitions induced for
these interactions reduce the dispersion of these surface
fields. This homogenising effect is associated with a posi-
tional ordering of the remaining superconducting spheres,
and should be an important factor in reducing the energy
uncertainty in detection applications of SSG systems.

We have compared simulation results of both transi-
tions and surface field distributions with the analytical
cluster expansion of Geigenmüller [14]. Theory and simu-
lations share the same mechanisms (diamagnetic interac-
tions and surface defects), and the same hypothesis (not
considering partial transitions nor diamagnetic contacts)
in modeling SSG systems. However the theory has been
developed up to first order in the filling factor, which lim-
its the calculation to two body interactions. Simulation
results show that the perturbative theory qualitatively
predicts the behavior of the system, namely the depen-
dence of the transitions and the maximum surface fields
on the concentration of the sample and on the value of
the external applied field. However, perturbative theory is
quantitatively correct only for very dilute samples, with
occupied volume fractions of at most 1−2%. This range of
validity increases for systems initially at higher densities
after having undergone a large number of transitions. The
ordering of these resulting configurations is well described
by the theory.

As a final conclusion, diamagnetic interactions appear
to be a factor of fundamental concern in SSG systems.
Results from perturbative expansions, although providing
a very useful framework for analyzing experiments, have
a rather limited range of validity, and should be used with
caution in obtaining quantitative information. In particu-
lar, extrapolation to the zero concentration limit of experi-
mental data should only be performed for very dilute sam-
ples, within the validity range of the expansion. The use
of simulations to obtain results for all densities should be-
come an essential tool in interpreting SSG experiments. In
this sense, generalization of the theoretical framework in
which both simulations and perturbative theory are based
could be essential to analyze very concentrated systems,
in which partial transitions due to diamagnetic contact
can occur.

These results, or more properly the numerical tech-
niques in obtaining them, may also be of interest in a
re-examination of the earlier Ginzburg-Landau parame-
ter determinations from multi-grain measurements of the
supercooled-to-superconducting transition. This numeri-
cal approach should also be of use in areas of condensed
matter physics other than superconductivity, such as vis-
cous fluid flow through a disordered porous medium,
where similar equations arise, or investigation of the mag-
netic properties of ultrathin ferromagnetic films [21].
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18. H. Dubos et al., Phys. Rev. B 58, 6468 (1998); A. Larrea

et al., Nucl. Instrum. Meth. A 317, 541 (1992).
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